
Hamiltonian symplectic embedding of the massive noncommutative U(1) theory

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2004 J. Phys. A: Math. Gen. 37 9303

(http://iopscience.iop.org/0305-4470/37/39/016)

Download details:

IP Address: 171.66.16.64

The article was downloaded on 02/06/2010 at 19:12

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/37/39
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 37 (2004) 9303–9315 PII: S0305-4470(04)77778-1

Hamiltonian symplectic embedding of the massive
noncommutative U (1) theory

C Neves1, W Oliveira1, D C Rodrigues2 and C Wotzasek2

1 Departamento de Fı́sica, ICE, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora,
MG, Brazil
2 Instituto de Fı́sica, Universidade Federal do Rio de Janeiro, 21945-970, Rio de Janeiro, RJ,
Brazil

E-mail: cneves@fisica.ufjf.br, wilson@fisica.ufjf.br, clovis@if.ufrj.br (Rodrigues) and
cabral@if.ufrj.br (Wotzasek)

Received 15 March 2004, in final form 20 July 2004
Published 15 September 2004
Online at stacks.iop.org/JPhysA/37/9303
doi:10.1088/0305-4470/37/39/016

Abstract
We show that the massive noncommutative U(1) theory is embedded in a
gauge theory using an alternative systematic way [1], which is based on the
symplectic framework. The embedded Hamiltonian density is obtained after
a finite number of steps in the iterative symplectic process as opposed to the
result proposed using the BFFT formalism [2]. This alternative formalism
of embedding shows how to get a set of dynamically equivalent embedded
Hamiltonian densities.

PACS numbers: 11.10.Ef, 11.30.−j, 11.10.Lm

1. Introduction

The embedding mechanism, first suggested by Faddeev and Shatashivilli [3], has been a
successful constraint conversion procedure over the last decades. The main concept behind
this procedure is based on the enlargement of the phase space with the introduction of new
variables, called Wess–Zumino (WZ) variables, which changes the second class nature of the
constraint to first class. This procedure has been developed in different contexts [1, 7–9]
in order to avoid some problems that affect the quantization process of some theories, such
as chiral theory, where the anomaly obstructs the quantization mechanism, and nonlinear
models, where the operator ordering ambiguities arise. It is important to comment here that
the proposed embedding procedure, whether it is applied to commutative or noncommutative
theories, is to unveil the origin of the ambiguities of all embedding approaches.

The great deal of interest in noncommutative (NC) field theories started when it was
noted that noncommutative spaces naturally arise in string theory with a constant background
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magnetic field in the presence of D-branes. It is important to mention here that this
noncommutativity in the context of string theory with a constant background magnetic field
in the presence of D-branes is eliminated constructing a mechanical system which reproduces
classical dynamics of the string [10]. Besides their origin in strings theories and branes, NC
field theories have been extensively studied in many branches of physics [2, 4–6, 11, 12].

In order to obtain the noncommutative version of a field theory one replaces the usual
product of fields in the action by the Moyal product, defined as

φ1(x) � φ2(x) = exp

(
i

2
θµν∂x

µ∂y
ν

)
φ1(x)φ2(y)

∣∣∣∣
x=y

(1)

where θµν is a real and antisymmetric constant matrix. As a consequence, NC theories are
highly nonlocal. We also note that the Moyal product of two fields in the action is the same
as the usual product (see the appendix), provided we discard boundary terms. Thus, the
noncommutativity affects just the vertices.

Recently, the embedded version of the massive noncommutative U(1) theory was obtained
through the BFFT constraint conversion scheme [2]. In this work, the authors showed how
to obtain a set of second class constraints and Hamiltonian which form an involutive system
of dynamical quantities. However, both the constraints and Hamiltonian were expressed as
a series of Moyal commutators among the variables belonging to the WZ extended phase
space. Our goal in the present work is to propose an embedded version for the massive
noncommutative U(1) theory where the embedded Hamiltonian density is not expressed as
an expansion on the WZ variables but as a finite sum. To this end, we will use the symplectic
embedding formalism (see section 2) [1].

Our paper is organized as follows. In section 2, we present an overview of the
symplectic embedding formalism. In section 3, we analyse the symplectic quantization
of the noncommutative massive U(1) theory and compute the Dirac brackets among the phase
space. In section 4, we investigate the embedded version for the noncommutative massive
U(1) from the symplectic embedding point of view. We note that after a finite number of steps
of the iterative symplectic embedding process, we obtain an embedded Hamiltonian density.
In consequence, this Hamiltonian density has a finite number of WZ terms as opposed to [2].
In section 5, we present some concluding remarks. In the appendix, we list some properties
of the Moyal product that we use in this paper.

2. General formalism

In this section, we describe an alternative embedding technique that changes the second
class nature of a constrained system to first class. This technique follows the Faddeev and
Shatashivilli formalism [3] and is based on a contemporary framework that handles constrained
models, namely, the symplectic formalism [13, 15].

In order to systematize the symplectic embedding formalism, we consider a general
noninvariant mechanical model whose dynamics is governed by a Lagrangian L(ai, ȧi , t)

(with i = 1, 2, . . . , N), where ai and ȧi are the space and velocity variables, respectively.
Note that this model does not result in loss of generality or physical content. Following the
symplectic method, the zeroth-iterative first-order Lagrangian 1-form is written as

L(0) dt = A
(0)
θ dξ (0)θ − V (0)(ξ) dt, (2)

where the symplectic variables are

ξ (0)α =
{
ai, with α = 1, 2, . . . , N,

pi, with α = N + 1, N + 2, . . . , 2N,
(3)
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A(0)
α are the canonical momenta and V (0) is the symplectic potential. The symplectic tensor is

given by

f
(0)
αβ = ∂A

(0)
β

∂ξ (0)α
− ∂A(0)

α

∂ξ (0)β
. (4)

When the 2-form f ≡ 1
2fθβ dξ θ ∧ dξβ is singular, the symplectic matrix (4) has a zero mode

(ν(0)) that generates a new constraint when contracted with the gradient of the symplectic
potential,

	(0) = ν(0)α ∂V (0)

∂ξ (0)α
. (5)

This constraint is introduced into the zeroth-iterative Lagrangian 1-form, equation (2), through
a Lagrange multiplier η, generating the next one

L(1) dt = A
(0)
θ dξ (0)θ + dη 	(0) − V (0)(ξ) dt,

(6)
= A(1)

γ dξ (1)γ − V (1)(ξ) dt,

with γ = 1, 2, . . . , (2N + 1) and

V (1) = V (0)|	(0)=0, ξ (1)γ = (ξ (0)α, η), A(1)
γ = (

A(0)
α ,	(0)

)
. (7)

As a consequence, the first-iterative symplectic tensor is computed as

f
(1)
γβ = ∂A

(1)
β

∂ξ (1)γ
− ∂A(1)

γ

∂ξ (1)β
. (8)

If this tensor is nonsingular, the iterative process stops and the Dirac brackets among the phase
space variables are obtained by the inverse matrix

(
f

(1)
γβ

)−1
and, consequently, the Hamilton

equation of motion can be computed and solved as well [14]. It is well known that a physical
system can be described in terms of a symplectic manifold M, at least classically. From a
physical point of view, M is the phase space of the system while a nondegenerate closed
2-form f can be identified as the Poisson bracket. The dynamics of the system is determined
by just specifying a real-valued function (Hamiltonian) H on phase space, i.e., one of these
real-valued functions solves the Hamilton equation, namely,

ι(X)f = dH, (9)

and the classical dynamical trajectories of the system in phase space are obtained. It is
important to mention here that if f is nondegenerate, equation (9) has a unique solution. The
nondegeneracy of f means that the linear map  : T M → T ∗M defined by (X) := (X)f

is an isomorphism; due to this equation (9) is solved uniquely for any Hamiltonian
(X = −1(dH)). In contrast, the tensor has a zero mode and a new constraint arises, indicating
that the iterative process goes on until the symplectic matrix becomes nonsingular or singular.
If this matrix is nonsingular, the Dirac brackets will be determined. In [14], the authors
consider in detail the case when f is degenerate, which usually arises when constraints
are presented on the system. In such a case, (M, f ) is called a presymplectic manifold.
As a consequence, the Hamilton equation, equation (9), may not possess solutions, or possess
nonunique solutions. In contrast, if this matrix is singular and the respective zero mode does
not generate a new constraint, the system has a symmetry.

The systematization of the symplectic embedding formalism begins by assuming that the
gauge-invariant version of the general Lagrangian (L̃(ai, ȧi , t)) is given by

L̃(ai, ȧi , ϕp, t) = L(ai, ȧi , t) + LWZ(ai, ȧi , ϕp), p = 1, 2, (10)
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where ϕp = (θ, θ̇ ) and the extra term (LWZ) depends on the original (ai, ȧi) and WZ (ϕp)

configuration variables. Indeed, this WZ Lagrangian can be expressed as an expansion in
terms of the WZ variable (ϕp) such that

LWZ(ai, ȧi , ϕp) =
∞∑

n=1

υ(n)(ai, ȧi , ϕp), with υ(n)(ϕp) ∼ ϕn
p, (11)

which satisfies the following boundary condition:

LWZ(ϕp = 0) = 0. (12)

The reduction of the Lagrangian, equation (10), into its first-order form precedes the
beginning of the conversion process, thus

L̃(0) dt = A
(0)
α̃ dξ̃ (0)α̃ + πθ dθ − Ṽ (0) dt, (13)

where πθ is the canonical momentum conjugated to the WZ variable, that is,

πθ = ∂LWZ

∂θ̇
=

∞∑
n=1

∂υ(n)(ai, ȧi , ϕp)

∂θ̇
. (14)

The expanded symplectic variables are ξ̃ (0)α̃ ≡ (ai, pi, ϕp) and the new symplectic
potential becomes

Ṽ (0) = V (0) + G(ai, pi, λp), p = 1, 2, (15)

where λp = (θ, πθ ). The arbitrary function G(ai, pi, λp) is expressed as an expansion in
terms of the WZ fields, namely,

G(ai, pi, λp) =
∞∑

n=0

G(n)(ai, pi, λp), (16)

with

G(n)(ai, pi, λp) ∼ λn
p. (17)

In this context, the zeroth canonical momenta are given by

Ã
(0)

α̃ =



A(0)
α , with α̃ = 1, 2, . . . , N,

πθ , with α̃ = N + 1,

0, with α̃ = N + 2.

(18)

The corresponding symplectic tensor, obtained from the following general relation:

f̃
(0)

α̃β̃
= ∂Ã

(0)

β̃

∂ξ̃ (0)α̃
− ∂Ã

(0)

α̃

∂ξ̃ (0)β̃
, (19)

is

f̃
(0)

α̃β̃
=


f

(0)
αβ 0 0
0 0 −1
0 1 0


 , (20)

which should be a singular matrix.
The implementation of the symplectic embedding scheme consists in computing the

arbitrary function (G(ai, pi, λp)). To this end, the correction terms in order of λp, within
G(n)(ai, pi, λp), must be computed as well. If the symplectic matrix (equation (20)) is singular,
it has a zero-mode �̃ and, consequently, we have

�̃(0)α̃ f̃
(0)

α̃β̃
= 0, (21)
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where we assume that this zero mode is

�̃(0) = (γ α 0 0), (22)

where γ α is a generic line matrix. Using the relation given in equation (21) together with
equations (20) and (22), we get

γ αf
(0)
αβ = 0. (23)

In agreement with the symplectic formalism, we get a zero mode, which must be contracted
with the gradient of the symplectic potential. Consequently, we obtain a constraint, which is
given by

	 = γ α

[
∂V (0)

∂ξ (0)α
+

∂G(ai, pi, λp)

∂ξ (0)α

]
. (24)

Due to this, the first-order Lagrangian is rewritten as

L̃(1) = A
(0)
α̃

˙̃ξ
(0)α̃

+ πθ θ̇ + 	η̇ − Ṽ (1), (25)

where Ṽ (1) = V (0). Note that the symplectic variables are now ξ̃ (1)α̃ ≡ (ai, pi, η, λp) (with
α̃ = 1, 2, . . . , N + 3) and the corresponding symplectic matrix becomes

f̃
(1)

α̃β̃
=




f
(0)
αβ fαη 0 0

fηβ 0 fηθ fηπθ

0 fθη 0 −1
0 fπθη 1 0


 , (26)

where

fηθ = − ∂

∂θ

[
γ α

(
∂V (0)

∂ξ (0)α
+

∂G(ai, pi, λp)

∂ξ (0)α

)]
,

fηπθ
= − ∂

∂πθ

[
γ α

(
∂V (0)

∂ξ (0)α
+

∂G(ai, pi, λp)

∂ξ (0)α

)]
, (27)

fαη = ∂	

∂ξ(0)α
= ∂

∂ξ (0)α

[
γ α

(
∂V (0)

∂ξ (0)α
+

∂G(ai, pi, λp)

∂ξ (0)α

)]
.

Since our goal is to unveil a WZ symmetry, this symplectic tensor must be singular and,
consequently, it has a zero mode, namely,

ν̃
(1)

(ν)(a) = (
µα

(ν) 1 a b
)
, (28)

which satisfies the relation

ν̃
(1)α̃

(ν)(a)f̃
(1)

α̃β̃
= 0. (29)

Note that the parameters (a, b) can be 0 or 1 and ν indicates the number of choices for
ν̃(1)α̃ . It is important to note that ν is not a fixed parameter. As a consequence, there are two
independent sets of zero modes given by

ν̃
(1)

(ν)(0) = (
µα

(ν) 1 0 1
)
, ν̃

(1)

(ν)(1) = (
µα

(ν) 1 1 0
)
. (30)

Note that the matrix elements µα
(ν) present some arbitrariness which can be fixed in order to

disclose a desired WZ gauge symmetry. In addition, in our formalism the zero-mode ν̃
(1)α̃

(ν)(a) is
the gauge symmetry generator, which allows us to display the symmetry from the geometrical
point of view. At this point, we focus attention upon the fact that this is an important
characteristic since it opens up the possibility of disclosing the desired hidden gauge symmetry
from the noninvariant model. Different choices of the zero mode generate different gauge-
invariant versions of the second class system; however, these gauge-invariant descriptions are
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dynamically equivalent, i.e., there is the possibility of relating this set of independent zero
modes, equation (30), through canonical transformation

(
˜̄ν(′,1)

(ν)(a) = T · ˜̄ν(1)

(ν)(a)

)
, where a bar

means a transpose matrix. For example,


µα
(ν)

1
0
1


 =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 ·




µα
(ν)

1
1
0


 . (31)

It is important to mention here that, in the context of the BFFT formalism, the matrix X is
arbitrary and, in consequence, different choices for the degenerate matrix X lead to different
gauge-invariant versions of the second class model [16]. Now, it becomes clear that the
arbitrariness present in the BFFT and iterative constraint conversion methods has its origin in
the choice of the zero mode.

From relation (29), together with equations (26) and (28), some differential equations
involving G(ai, pi, λp) are obtained, namely,

0 = µα
(ν)f

(0)
αβ + fηβ,

0 = µα
(ν)f

(0)
αη + afθη + bfπθ η,

0 = f
(0)
ηθ + b,

0 = f (0)
ηπθ

− a.

(32)

By solving the above relations, some correction terms, within
∑∞

m=0 G(m)(ai, pi, λp), can be
determined, also including the boundary conditions (G(0)(ai, pi, λp = 0)).

In order to compute the remaining correction terms of G(ai, pi, λp), we impose that
no more constraints arise from the contraction of the zero mode

(
ν̃

(1)α̃

(ν)(a)

)
with the gradient

of potential Ṽ (1)(ai, pi, λp). This condition generates a general differential equation, which
reads

0 = ν̃
(1)α̃

(ν)(a)

∂Ṽ (1)(ai, pi, λp)

∂ξ̃ (1)α̃

= µα
(ν)

[
∂V (1)(ai, pi)

∂ξ (1)α
+

∂G(ai, pi, θ, πθ )

∂ξ (1)α

]
+ a

∂G(ai, pi, λp)

∂θ
+ b

∂G(ai, pi, λp)

∂πθ

= µα
(ν)

[
∂V (1)(ai, pi)

∂ξ (1)α
+

∞∑
m=0

∂G(m)(ai, pi, λp)

∂ξ (1)α

]
+ a

∞∑
n=0

∂G(n)(ai, pi, λp)

∂θ

+ b

∞∑
m=0

∂G(n)(ai, pi, λp)

∂πθ

. (33)

The last relation allows us to compute all correction terms in the order of λp, within
G(n)(ai, pi, λp). Note that this polynomial expansion in terms of λp is equal to zero;
subsequently, all the coefficients for each order in this WZ variable must be identically
null. In view of this, each correction term in the orders of λp can be determined as well. For
a linear correction term, we have

0 = µα
(ν)

[
∂V (0)(ai, pi)

∂ξ (1)α
+

∂G(0)(ai, pi)

∂ξ (1)α

]
+ a

∂G(1)(ai, pi, λp)

∂θ
+ b

∂G(1)(ai, pi, λp)

∂πθ

, (34)

where the relation V (1) = V (0) is used. For a quadratic correction term, we get

0 = µα
(ν)

[
∂G(1)(ai, pi, λp)

∂ξ (0)α

]
+ a

∂G(2)(ai, pi, λp)

∂θ
+ b

∂G(2)(ai, pi, λp)

∂πθ

. (35)
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From these equations, a recursive equation for n � 2 is proposed as

0 = µα
(ν)

[
∂G(n−1)(ai, pi, λp)

∂ξ (0)α

]
+ a

∂G(n)(ai, pi, λp)

∂θ
+ b

∂G(n)(ai, pi, λp)

∂πθ

, (36)

which allows us to compute the remaining correction terms in the order of θ and πθ . This
iterative process is successively repeated up to equation (33) when it becomes identically null
(case (i)) or when an extra term G(n)(ai, pi, λp) cannot be computed (case (ii)). Then, the new
symplectic potential is written as

Ṽ (1)(ai, pi, λp) = V (0)(ai, pi) + G(ai, pi, λp). (37)

For case (i), the new symplectic potential is gauge invariant. For the second case (ii), due to
some correction terms within G(ai, pi, λp) that are not yet determined, this new symplectic
potential is not gauge invariant. As a consequence, there are some WZ counter-terms in the
new symplectic potential, which can be fixed using Hamilton’s equation of motion for the
WZ variables θ and πθ together with the canonical momentum relation conjugated to θ , given
in equation (14). Due to this, the gauge-invariant Hamiltonian is obtained explicitly and the
zero-mode ν̃

(1)α̃

(ν)(a) is identified as the generator of the infinitesimal gauge transformation given
by

δξ̃ α̃
(ν)(a) = εν̃

(1)α̃

(ν)(a), (38)

where ε is an infinitesimal parameter.

3. Symplectic quantization of the noncommutative massive U (1) theory

The Lagrangian density that governs the dynamics of the noncommutative massive U(1)

theory is

L = − 1
4FµνF

µν + 1
2m2AµAµ, (39)

where the stress tensor in terms of the Moyal commutator is given by

Fµν = ∂µAν − ∂νAµ − ie[Aµ,Aν], (40)

with

[Aµ,Aν] = Aµ � Aν − Aν � Aµ, (41)

and where

Aµ(x) � Aν(x) = exp
( i

2
θγλ∂x

γ ∂
y

λ

)
Aµ(x)Aν(y)

∣∣
x=y

,

Aν(x) � Aµ(x) = exp
( i

2
θλγ ∂x

λ ∂y
γ

)
Aν(x)Aµ(y)

∣∣
x=y

,

(42)

where θγλ is a real and antisymmetric constant matrix. In order to avoid causality and unitary
problems in the Moyal space, we take θ0i = 0 [17]. Hence, the � product of the gauge fields
into the stress tensor, given in equations (40), becomes

Aµ(x) � Aν(x) = exp
( i

2
θ ij ∂x

i ∂
y

j

)
Aµ(x)Aν(y)

∣∣
x=y

,

Aν(x) � Aµ(x) = exp
( i

2
θji∂x

j ∂
y

i

)
Aν(x)Aµ(y)

∣∣
x=y

.

(43)

Now, we are ready to reduce the second-order Lagrangian density, equation (39), into its
first-order form, which is read as

L = πiȦi + A0(∂iπ
i + m2A0) + 1

2πiπ
i − ieπi(A0 � Ai − Ai � A0)

− 1
4FijF

ij + 1
2m2AiA

i − 1
2m2A0A

0, (44)
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with the canonical momentum πi given by

πi = −F0i

= −Ȧi + ∂iA0 + ie(A0 � Ai − Ai � A0). (45)

The symplectic fields are ξ (0)α = (Ai, πi, A0) and the zeroth-iterative symplectic matrix
is

f (0) =




0 −δi
j 0

δ
j

i 0 0
0 0 0


 δ(x − y), (46)

which is a singular matrix. It has a zero mode that generates the following constraint:

	(x) = ∂x
i πi(x) + m2A0(x) − ie[Ai(x), πi(x)], (47)

identified as the Gauss law. Bringing back this constraint into the canonical part of the first-
order Lagrangian density L(0) using a Lagrangian multiplier (β), the first-iterated Lagrangian
density written in terms of ξ (1)α = (Ai, πi, A0, β) is obtained as

L(1) = πiȦi + β̇	 + 1
2πiπ

i − 1
4FijF

ij + 1
2m2AiA

i − 1
2m2A0A

0, (48)

with the following symplectic fields ξ (1)α = (Ai, πi, A0, β). The first-iterated symplectic
matrix is obtained as

f (1) =




0 −δi
j δ(x − y) 0 ie[πi(y), δ(x − y)]

δ
j

i δ(x − y) 0 0 fπiβ

0 0 0 m2δ(x − y)

ie[δ(x − y), πi(x)] fβπi
−m2δ(x − y) 0


 , (49)

where

fπiβ(x, y) = ∂
y

i δ(x − y) + ie[δ(x − y),Ai(y)]. (50)

This matrix is nonsingular and, as set by the symplectic formalism, the Dirac brackets
among the phase space fields are obtained from the inverse of the symplectic matrix, namely,

{Ai(x), Aj (y)}∗ = 0,

{Ai(x), πj (y)}∗ = δ
j

i δ(x − y),

{Ai(x), A0(y)}∗ = − 1

m2

(
∂x
i δ(x − y) +

ie

m2
[δ(x − y),Ai(y)]

)
,

{πi(x), A0(y)}∗ = ie

m2
[δ(x − y), πi(y)].

(51)

Now, we are ready to implement the symplectic embedding formalism of the theory. This
will be done in the next section.

4. The embedded model

At this point, we are interested to embed the massive noncommutative U(1) theory via the
symplectic embedding formalism (section 2) [1]. The symplectic embedding process begins
enlarging the phase space with the introduction of two WZ fields γ = (η, πη). Due to this,
the original Lagrangian density, equation (39), becomes

L̃ = L + LWZ, (52)
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where LWZ is a WZ counter-term which eliminates the noninvariance of the theory. In
agreement with symplectic embedding formalism, this new Lagrangian density must be
reduced into its first-order form, namely,

L̃(0) = πiȦi + πηη̇ − Ṽ (0), (53)

where Ṽ (0) is the symplectic potential given by

Ṽ (0) = −A0(∂iπ
i + m2A0) − 1

2πiπ
i + ieπi(A0 � Ai − Ai � A0)

+ 1
4FijF

ij − 1
2m2AiA

i + 1
2m2A0A

0 + G(Ai, πi, A0, γ ), (54)

where G ≡ G(Ai, πi, A0, γ ) is an arbitrary function and is written as an expansion in terms
of the WZ fields as

G(Ai, πi, A0, γ ) =
∞∑

n=0

G(n)(Ai, πi, A0, γ ) with G(n)(Ai, πi, A0, γ ) ∼ (γ )n. (55)

The new symplectic variables are now given by ν̃(0)α = (Ai, πi, A0, γ ) and the respective
symplectic tensor is

f̃
(0) =




0 −δi
j δ(x − y) 0 0 0

δ
j

i δ(x − y) 0 0 0 0
0 0 0 0 0
0 0 0 0 −δ(x − y)

0 0 0 δ(x − y) 0


 . (56)

This singular matrix has a zero mode, which is set as

ν̃(0) = (0 0 1 0 0). (57)

This zero mode when contracted with the symplectic potential generates the following
constraint:

	(x) = ∂x
i πi(x) + m2A0(x) − ie[Ai(x), πi(x)] −

∫
dy

δG(y)

δA0(x)
. (58)

In accordance with the symplectic scheme, this constraint must be introduced into the
zeroth-iterative first-order Lagrangian density through a Lagrange multiplier ζ , generating the
next one,

L̃(1) = πiȦi + πη̇ + 	ζ̇ − Ṽ (1), (59)

with Ṽ (1) = Ṽ (0)|	=0. Now, the symplectic vector is ξ̃ (1) = (Ai, πi, A0, ζ, γ ) with the
corresponding tensor given by

f̃
(1) =




0 −δ
j

i δ(x − y) 0 δ	(y)

δAi(x)
0 0

δi
j δ(x − y) 0 0 δ	(y)

δπi (x)
0 0

0 0 0 δ	(y)

δA0(x)
0 0

− δ	(x)

δAj (y)
− δ	(x)

δπj (y)
− δ	(x)

δA0(y)
0 − δ	(x)

δη(y)
− δ	(x)

δπη(y)

0 0 0 δ	(y)

δη(x)
0 −δ(x − y)

0 0 0 δ	(y)

δπη(x)
δ(x − y) 0




. (60)

Now, we are ready to remove the noninvariance character of the original theory. To this
end, it is necessary to assume that the symplectic matrix above is singular. Consequently,
this matrix has a respective zero mode, which is degenerate due to the arbitrariness present
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in the matrix, which resides on the degenerate function G. This is not bad at all since it
gives room for several approaches to eliminate the noninvariance structure. Consequently,
this opens up the possibility of obtaining several commutative embedded representations for
the noncommutative model, all of which are dynamically equivalent. This represents a quite
simple feature of the symplectic embedding formalism. In view of this, we choose a convenient
zero mode, which is written as

ν̃(1) = (∂x,i 0 0 1 1 1). (61)

Contracting this zero mode with the symplectic matrix above, namely,∫
d3x ν(1)α̃(x)f̃

(1)

α̃β̃
(x, y) = 0, (62)

we get the boundary condition G(0) as

G(0)(x) = 1
2m2A0(x)A0(x) − ie[Ai(x), πi(x)]A0(x), (63)

and some of the correction terms belong to G(1), namely, πηA
0 − ηA0. We note that the

correction term G(n) for n � 2 has no dependence on the temporal component of the potential
field A0. Thus, G(n) ≡ G(n)(Ai, πi, γ ) for n � 2. This completes the first step of the
symplectic embedding formalism.

After introducing these correction terms into the symplectic potential Ṽ (1), let us begin
with the second step in order to reformulate the theory as a gauge theory. Following the
prescription of the symplectic embedding formalism, the zero-mode ν̃(1) does not produce a
constraint when contracted with the gradient of symplectic potential, namely,∫

d3x ν̃(1)α̃(y)
δṼ (1)(x)

δξ̃ α̃(y)
= 0, (64)

instead it produces a general equation that allows the computation of the correction terms in
the order of γ enclosed into G(Ai, πi, A0, γ ). To compute the remaining linear correction
terms expressed in the order of γ , G(1), we use the following relation (see (34)):

0 =
∫

d3x

{
−ie[Fij (x), Ai(x)]∂j

y δ(x − y) + m2Aj(x)∂j
y δ(x − y) +

δG(1)(x)

δη(y)
+

δG(1)(x)

δπη(y)

}
.

(65)

After a straightforward calculation, the complete linear correction term expressed in the order
of γ is given by

G(1)(x) = πη(x)A0(x) − η(x)A0(x) +
{
ie∂j

x [Fij (x), Ai(x)] − m2∂j
x Aj (x)

}
1
2 (η(x) + πη(x)).

(66)

In order to compute the quadratic correction term, we use the following relation (see (35)):∫
d3x

[
∂j
x

(
δG(1)

δAj (x)

)
+

δG(2)(y)

δη(x)
+

δG(2)(y)

δπη(x)

]
= 0, (67)

which after a direct calculation gives

G(2)(x) = − ie

4
Fij

[
∂i
xη(x), ∂j

x η(x)
] − 1

4
m2∂j

x η(x)∂x
j η(x)

− e2

4

[
∂i
xη(x), Aj (x)

][
Ai(x), ∂j

x η(x)
] − e2

4

[
Ai(x), ∂x

j η(x)
][

Ai(x), ∂j
x η(x)

]
− ie

4
Fij

[
∂i
xπη(x), ∂j

x πη(x)
] − 1

4
m2∂j

x πη(x)∂x
j πη(x)
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− e2

4

[
∂i
xπη(x), Aj (x)

][
Ai(x), ∂j

x πη(x)
]

− e2

4

[
Ai(x), ∂x

j πη(x)
][

Ai(x), ∂j
x πη(x)

]
. (68)

The remaining correction terms G(n) for n � 3 are computed in an analogous way (see
(36)) and we just write them down as

G(3)(x) = e2

2

[
Ai(x), ∂x

j η(x)
][

∂j
x η(x), ∂y,iη(x)

]
+

e2

2

[
Ai(x), ∂x

j πη(x)
][

∂j
x πη(x), ∂y,iπη(x)

]
,

G(4)(x) = e2

8

[
∂x
i η(x), ∂x

j η(x)
][

∂j
x η(x), ∂i

xη(x)
]

+
e2

8

[
∂x
i πη(x), ∂x

j πη(x)
][

∂j
x πη(x), ∂i

xπη(x)
]
.

(69)

Note that the fourth-order correction term has dependence on the WZ field only, thus all
correction terms G(n) for n � 5 are null. Then, the gauge-invariant first-order Lagrangian
density is given by

L̃ = πi(x)Ȧi(x) + π(x)η̇(x) − H̃, (70)

where H̃ is the gauge-invariant Hamiltonian density, identified as the symplectic potential
Ṽ (1), namely,

H̃ = Ṽ (1) = −1

2
πi(x)πi(x) +

1

4
FijF

ij − 1

2
m2Ai(x)Ai(x) + πη(x)A0(x) − η(x)A0(x)

+
ie

2
∂j
x [Fij (x), Ai(x)]η(x) +

1

2
m2∂j

x Aj (x)η(x) − ie

4
Fij

[
∂i
xη(x), ∂j

x η(x)
]

− 1

4
m2∂j

x η(x)∂x
j η(x) − e2

4

[
∂i
xη(x), Aj (x)

][
Ai(x), ∂j

x η(x)
]

− e2

4

[
Ai(x), ∂x

j η(x)
][

Ai(x), ∂j
x η(x)

]
+

e2

2

[
Ai(x), ∂x

j η(x)
][

∂j
x η(x), ∂y,iη(x)

]
+

e2

8

[
∂x
i η(x), ∂x

j η(x)
][

∂j
x η(x), ∂i

xη(x)
]

+
ie

2
∂j
x [Fij (x), Ai(x)]πη(x)

+
1

2
m2∂j

x Aj (x)πη(x) − ie

4
Fij

[
∂i
xπη(x), ∂j

x πη(x)
] − 1

4
m2∂j

x πη(x)∂x
j πη(x)

− e2

4

[
∂i
xπη(x), Aj (x)

][
Ai(x), ∂j

x πη(x)
]

− e2

4

[
Ai(x), ∂x

j πη(x)
][

Ai(x), ∂j
x πη(x)

]
+

e2

2

[
Ai(x), ∂x

j πη(x)
][

∂j
x πη(x), ∂y,iπη(x)

]
+

e2

8

[
∂x
i πη(x), ∂x

j πη(x)
][

∂j
x πη(x), ∂i

xπη(x)
]
. (71)

In order to complete the gauge-invariant reformulation of the massive noncommutative
U(1) theory, we compute the infinitesimal gauge transformations of the phase space
coordinates. In agreement with the symplectic method, the zero-mode ν̃(1) is the generator of
the infinitesimal gauge transformations (δO = εν̃(1)), which are given by

δAi = ∂iε, δπi = 0, δA0 = 0, δη = ε, δπη = ε, (72)

where ε(y) is an infinitesimal time-dependent parameter. Thus, we complete the Hamiltonian
symplectic embedding of the massive noncommutative U(1) theory.
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Despite the result, it seems important to mention here that it is well known that the gauge
invariance can also be obtained by means of Stückelberg fields [18]. Indeed, some authors
[2] have discussed this point, precisely, in section 2 of [2]. These authors have rewritten the
potential fields as

Āµ = g � Aµ � g−1 + ıg � ∂µ � g−1, (73)

where g is the Stückelberg field. Subsequently, the Lagrangian, equation (39), rewritten in
terms of the modified gauge fields Āµ becomes a gauge-invariant description of the massive
noncommutative U(1) theory, whose infinitesimal gauge transformations are

δAµ = ∂µα − ie[Aµ, α],

δg = −ieg � α.
(74)

In [2], the authors also mentioned that it is not trivial to relate the gauge-invariant
Lagrangian, obtained via the Stückelberg formalism, to the one obtained through the BFFT
constrained conversion scheme. In other work [19], the authors demonstrated that the gauge-
invariant Lagrangian for the massive commutative U(1) theory obtained through BFFT and
the Stückelberg formalism are equivalent in a quite easy form. Due to this, it seems that
the requirement of an infinite number of steps demanded by the BFFT method to change the
second class nature of the constraints to first class leads to a nontrivial connection with
the result obtained when the Stückelberg formalism is used.

In the present work, the second class nature of the constraints was changed to first class
by means of a finite number of steps and the infinitesimal gauge transformations, pointed out
by the zero mode, are picked out in order to make the constraint conversion process easy. Due
to this, we argue that if we choose a specific infinitesimal gauge transformation (zero mode),
it is possible to reproduce the result obtained by the Stückelberg formalism. Hence, it seems
possible to make trivial the connection of the gauge-invariant Lagrangian description, obtained
by the Stückelberg formalism, with the one obtained by the introduction of WZ fields.

5. Conclusion

In this paper, we have embedded the massive noncommutative U(1) theory. This was achieved
by an alternative embedding formalism based on the symplectic framework. The Hamiltonian
density of the embedded version of the massive noncommutative U(1) theory was also
obtained. A remarkable feature mentioned in the present work is that the embedded version
was obtained by applying a finite number of steps in the iterative symplectic embedding
process, which leads to an embedded Hamiltonian density with a finite number of WZ terms.
Further, we also discuss, in section 3, the new possibilities of embedding the noncommutative
theory. It is important to note that, by construction, these different embedded representations
of the noncommutative theory are dynamically equivalent, since the WZ gauge orbit is defined
by the zero mode. In view of this, the symplectic embedding formalism seems powerful
enough when compared with other WZ conversion schemes.
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Appendix. Some properties of the Moyal product

In this appendix we list some properties that we use in this paper.∫
dnx φ1 � φ2 =

∫
dnx φ1φ2 =

∫
dnx φ2 � φ1, (A.1)

(φ1 � φ2) � φ3 = φ1 � (φ2 � φ3) = φ1 � φ2 � φ3, (A.2)

∫
dnx φ1 � φ2 � φ3 =

∫
dnx φ2 � φ3 � φ1

=
∫

dnx φ3 � φ1 � φ2, (A.3)

∫
dnx [[A,B], C] � D =

∫
dnx [A,B] � [C,D]

=
∫

dnx [A,B][C,D]. (A.4)
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